
Per-Packet Protection (PPP) Scheme for Named
Data Networking

Chen He1,2, Jiangtao Luo2, Fei Zhang1,2, Zuoqi Jiang1,2, Mengnan Wang1,2

1.School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications
2.Electronic Information and Networking Research Institute, Chongqing University of Posts and Telecommunications

Chongqing 400065, China

erichec@outlook.com; Luojt@cqupt.edu.cn; S160131205@stu.cqupt.edu.cn; {294621293, 244791399}@qq.com

Abstract— Named Data Networking (NDN) is regarded as
a promising architecture for the future Internet. Due to the
characteristics of in-network caching and name-based routing
in NDN, access control cannot be tied to a particular location,
and traditional channel-based access control mechanisms are
no longer viable, which brings a major challenge to the access
control enforcement. To enhance content-based access control in
NDN, this paper presents a per-packet protection (PPP) scheme
based on a combination of public key encryption and symmetric-
key cryptography, which adopts one-way hash functions to gener-
ate random cipher keys for different data packets. Furthermore,
PPP using secret sharing method provides efficient and flexible
access control, which supports scalability and collusion resistance.
The experimental results prove that our solution introduces
acceptable overheads and reduces the computation time at the
users.

Index Terms—Named Data Networking, access control, encryp-
tion, data confidentiality

I. INTRODUCTION

With the popularity of Internet applications, Internet video

streaming and downloads make 57% of all Internet traffic to-

day and are expected to rise to 82% by 2021 [1], which implies

that the multimedia content will constitute most of the Internet

traffic and be shared. Meanwhile, with the explosive growth of

Internet users, the TCP/IP-based network architecture displays

deficiency in some aspects such as security, mobility and en-

ergy efficiency. As a set of clean-slate designs trying to address

these issues, Information-Centric Networking (ICN) has been

proposed, and NDN is one of the typical architectures. NDN

retains the same layered hourglass architecture with functional

differences, and adopts the forwarding mechanism based on

the content name rather than the source and destination ad-

dresses in IP networks. Moreover, it leverages the in-network

caching mechanism to reduce the network traffic load from

redundant requests and improve the utilization of network

resources [2].

Although NDN improves the network performance and

keeps in line with these future traffic trends, it also bears a

lot of security challenges, one of which is how to enforce

the access control mechanism, in other words, how to only

allow legitimate users to access valuable or even sensitive

contents [3]. Due to the feature of in-network caching, NDN

intermediate routers can cache the forwarded content, and

future requests can be satisfied quickly from the cached

duplicates, so the Content Producers (CPs) will lose direct

control over their content, which implies that access control

must be built into content itself [4].

Some encryption-based approaches have been applied to

access control in NDN. Misra et al [5] [6] proposed an

access control solution based on Broadcast Encryption (BE)

where a symmetric key is distributed by BE. Tao Chen et

al [7] proposed a probabilistic access control solution where

a symmetric key is distributed using public key infrastructure

(PKI) and NDN routers filter out unauthorized Interest packets

via bloom filter. In general cases, this kind of access control is

enough. However, if the same key is used to encrypt contents,

an attacker could crack the key and decrypt the subsequent

contents which will be fetched directly from NDN routers. So

more secure access control for NDN is needed especially in

some critical cases, such as the details of financial transactions,

supply chain information in some companies. Besides, how

to realize flexible and efficient revocation remains one of the

major challenges for access control in NDN.

To address the issues, we propose per-packet protection

(PPP) scheme that is based on the combination of public key

cryptography, secret sharing method [8] and symmetric en-

cryption. The main contributions of this paper are summarized

as follows:

• Aiming at encrypting each Data packet with different

keys, the symmetric key is generated using one-way hash

functions which are lightweight enough, and easy to

compute on every input, but hard to invert [9] [10], which

avoids that authorized users frequently request keys for

different packets.

• To distribute the symmetric key efficiently, our scheme

combines Identity Based Cryptography (IBC) and an

improved Shamir’s Secret Sharing (SSS) Method. It is

flexible in case of users’ addition and deletion and

reduces computation cost. Meanwhile, compared with the

scheme in [5] [6], our solution using secret sharing can

prevent users from colluding with better scalability.

The remainder of this paper is organized as follows. Section

II provides the background about NDN, and some methods ex-

ploited in our scheme. Section III is devoted to the description

978-1-5386-4870-4/18/$31.00 ©2018 IEEE

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

of the proposed PPP scheme. Section IV and section V pro-

vide security analysis and performance evaluation respectively.

Section VI concludes this paper.

II. BACKGROUND

A. Named Data Networking

A communication session in NDN is initiated by a requester,

and is performed using two packet types: Interest packet and

Data packet. The requester puts the name of desired content

into Interest packet and broadcasts it into the network. The

router forwards Interest packet to the Content Producer (CP)

based on that name. Once Interest packet arrives at a router

caching the requested data, Data packet will be sent as a

response from this router and follow the reverse path back

to the requester.

Each router in NDN maintains the following three data

structures, including Forwarding Information Base (FIB), Con-

tent Store (CS) and Pending Interest Table (PIT). FIB is similar

to the routing table in IP networks, maintaining next-hop(s)

and other information for each reachable destination name

prefix. CS based on the cache strategy can selectively save

Data packet for a period of time. PIT maintains an entry for

each incoming Interest packet that the router has forwarded

but not satisfied until its corresponding Data packet arrives or

the entry lifetime expires. Each entry in PIT records the name

and incoming interface of Interest packet so that Data packet

can be forwarded downstream to the requester [11].

B. Shamir’s Secret Sharing Method

Secret sharing method can be used to distribute the key and

realize flexible access control. The method divides a secret into

a number of shares, and no single share can independently

reveal any information about the secret. The secret can be

recovered only when the number of shares is greater than or

equal to a specified value.

In Shamir’s (k, n)-threshold scheme [8] based on polyno-

mial interpolation (“Lagrange interpolation”), n shares will

be generated from a secret, and at least k different shares

are required to reconstruct the secret, but every group of less

than k shares cannot obtain any information about the secret.

The method generates a randomly chosen polynomial of (k-

1)-degree: f(x) = s+ a1x+ a2x
2+ · · ·+ ak−1x

k−1, where s
represents the secret and can be obtained by k different points

(xi, yi) using Lagrange interpolation [12] as:

s =
k∑

i=1

yi×
k∏

j=1,j �=i

−xj

xi − xj
, (1)

where yi = f(xi) represents the i-th share (i = 1, 2, . . . , n).

C. Identity Based Cryptography

Unlike a traditional PKI system, an arbitrary string, such as

a user’s name, address or their combinations, can be chosen

as a public key and represents a unique identity in IBC which

includes Identity Based Encryption (IBE) and Identity Based

Signature (IBS). The corresponding secret key is generated by

a private key generator (PKG) and a semi-trusted third party.

Thus, neither does any pair of users need to exchange private

or public keys to communicate securely, nor is certificate

authority (CA) indispensable to keep key directories.

The IBE scheme consists of the following four steps [13]:

• Setup: The PKG generates a master-secret key (MSK)

and system parameters (SP) when inputting a security

parameter k. Only SP are made publicly available.

• Extract: The PKG generates a secret key SKID when

inputting SP , MSK, and an identity ID.

• Encryption: Take as input an identity ID, a message M ,

and SP , and as output a ciphertext M
′
.

• Decryption: Take as input M
′

and the corresponding

SKID, and as output M .

The IBS scheme consists of the following four steps [14]:

• Setup & Extract: The two steps are the same as the first

two steps in IBE.

• Encryption: Take as input SP , M , and SKID, and as

output the signature information σ that will be sent to the

recipient with M together.

• Decryption: Take as input SP , M , the corresponding

ID, and σ, and as output V . Only if V is equal to 1, the

signature is valid.

D. One-way hash functions

In order to achieve different keys for different Data packets

efficiently and ensure higher security, one-way hash functions

that map data of arbitrary length to data of a fixed length are

introduced to generate Data key. The one-way hash function

H includes the following properties [9]:

• H can be applied to a block of data at any size.

• H produces a fixed length output.

• H(x) is easy to compute for any given x.

• For any given block x, it is computationally infeasible to

find x �= y with H(x) = H(y).
• It is computationally infeasible to find any pair (x, y)

such that H(x) = H(y).

III. PROPOSED SOLUTION

A. Per Packet Encryption

The proposed scheme is based on content encryption to

protect the valuable or sensitive data objects. It encrypts each

data packet with different cipher key. Each key consists of two

parts, a fixed part called S1 and a variable part called S2. S1 is

invariant for all packets belonging to the same content while

S2 is different for different packets.

As shown in Fig. 1(a), a CP produces S1 for each content,

and divides the raw content into n smaller chunks Ci, i =
1, . . . n; then generates n random strings for each of them as

S2 (S21, S22, . . . , S2n). The CP then generates different Data

keys (DKi) for each chunk using multilevel hash of S1 and

S2i , H(S1, S2i), and then encrypts these chunks into ciphered

messages C
′
i , taking DKi as the symmetric cipher key. S2i is

appended to the message, building the ciphered Data packets.

S1 is distributed to the network by a secret shared method

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

described later, and only authorized users can restore it. H(·)
represents the one-way hash functions.

On the other end, after requesting and obtaining the ciphered

Data packets, an authorized user obtaining S1 and knowing

the Hash functions H(·) beforehand, can re-calculate DKi

using H(S1, S2i), then decrypt and get each chunk, and finally

rebuild the original content. The procedure is illustrated in Fig.

1(b), .

(a) PPP on the CP

(b) PPP on the user

Fig. 1. The principle of PPP

B. Distribution of S1

Fig. 2. The distribution of S1

It is crucial for the proposed scheme to distribute S1

securely and effectively. As described above, Shamir’s secret

sharing method (SSS) provides an effective way to distribute

a secret among users, but Shamir’s native approach is short in

scalability since it links the polynomial degree to the number

of users. Before introducing our modified version, we first

define two basic concepts, which are enlightened by the idea

in [15]:

Algorithm 1 Generation of Shares

Input: P , Q, k<Q, m<Q, where P , Q are large prime

numbers, such that P = rQ + 1, where r is a positive

integer (e.g. r = 2), and k, m represent the polynomial

degree and the number of users respectively.

Output: Generates a polynomial q(x) and (xj , q(xj)),
(ui, q(ui)), USi, ω(ui), CSi.

1: Generates s, a1, a2, · · ·, ak in the field Z∗
Q, and obtains

q(x) = s + a1x + a2x
2 + · · · + akx

k, where Z∗
Q is the

multiplicative group of integers of order Q.

2: Generates and stores (ui, q(ui)), (xj , q(xj)), and ensures

that ui, xj in the field Z∗
Q are positive, unique, where

i = (1, 2, · · ·,m), j = (1, 2, · · ·, k).
3: Calculates USi =

k∏
j=1

−xj

ui−xj
.

4: Calculates and stores ω(ui) =
k∑

j=1

q(xj)
−ui

xj−ui

k∏
l=1,l �=j

−xl

xj−xl
, where g is a generator of a

subgroup of GP of order Q, and GP is a cyclic group of

order P .

5: Generates τ in the field Z∗
Q, and obtains ξη = λη · gτ ·s,

then calculates CSi including CSi0 = gτ ·q(ui), CSi1 =
gτ ·ω(ui), where η = (1, 2, · · ·, μ), and λη is the S1 or its

sub-strings in the field Z∗
Q.

User’s share (US): It is a number computed by the CP for

each authorized user, and will be securely sent to the user. It

is a user-dependent parameter for re-constructing S1.

Complementary share (CS): It is another number calcu-

lated by the CP for each authorized user when each content is

produced. It is a user-dependent and content-related parameter

for re-constructing S1.

Given US and CS, a user can reconstruct S1. Algorithm

1 presents the procedure for generation of these shares.

For a bigger and more complex S1, the CP will split it

into smaller sub-strings λ: S1 = λ1 ‖λ2 ‖·· ·‖λμ. The CP

picks a random k-degree polynomial q(x) = s + a1x +
. . . + akx

k, and generates k points in a 2-dimensional plane

(x1, q(x1)), (x2, q(x2)), . . . , (xk, q(xk)) with distinct xj (j =
1, 2, . . . , k).

For a certain user i, a random point (ui, q(ui)) is se-

lected, such that USi for this user is calculated by USi =
k∏

j=1

−xj

ui−xj
. To calculate CSi of the user, a parameter ω(ui) =

k∑
j=1

q(xj)
−ui

xj−ui

k∏
l=1,l �=j

−xl

xj−xl
is calculated. Given g, a gener-

ator of a subgroup of GP of order Q, and τ generated for

a content object, the CP can obtain ξη = λη · gτ ·s, η =
(1, 2, · · ·, μ), and then get the CSi containing CSi0 = gτ ·q(ui)

and CSi1 = gτ ·ω(ui) for the user. Note that τ varies for

different content objects, leading to various CSi for the same

user i. Fortunately, the CP can compute different CSi rapidly

for different content objects because ω(ui) is stored in CP.

In Shamir’s native approach, a point (ui, q(ui)) is assigned

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

to the corresponding user. However, in our scheme, the users

hold US instead of the coordinates, and they cannot use the

other users’ US to reconstruct S1. Consequently, the US and

CS introduced can make the polynomial degree no longer

related with the number of users, which avoids the collusion

problem and provides sufficient scalability. Meanwhile, once

a user fetches US, it can request CS for different contents, and

the CP will assign the corresponding CS to the user directly

without encryption, which can make the distribution of S1

more efficient.

Considering the major strength of IBC scheme which can

establish a secure channel over a non-secure medium, the US
is distributed using IBC scheme.

A trusted PKG for IBC is responsible for generating the

secret key and common system parameters in the network.

Meanwhile, each user or producer has its own identity and the

corresponding secret key, namely the user’s secret key (USK)

and the user’s identity (UID), the producer’s secret key (PSK)

and the producer’s identity (PID). Each entity uses UID or

PID as the public key in the scheme.

As shown in Fig. 2, the CP calculates and encrypts USi

using UID, then distributes it to the authorized user i, and the

user can obtain USi using USK. In addition, the CP generates

S1 for a content object, then calculates and distributes ξ, CSi,

and the user i calculates S1 = λ1 ‖λ2 ‖·· ·‖λμ based ξ, CSi

and USi:

λη =
ξη

CSi1 · CSUSi
i0

=
ξη

gτ ·ω(ui)gτ ·q(ui)·USi

=
λη · gτ ·s
gτ ·s

, η ∈ [1, μ].

(2)

Fig. 3. The modified structure of Interest packet

C. Extension of Interest Packet

In order to verify whether the requester is legitimate,

Interest packet will be extended when using PPP scheme.

When requesting the legitimate access right or CS, a user

encrypts its UID using the CP’s PID, and embeds the en-

crypted UID within the Interest packet as Identity, which can

effectively protect the user’s identity and individual privacy.

Meanwhile, Timestamp that is unique for the same user in

Interest Packet can prevent the malicious eavesdropper from

using the legitimate requests. If an Interest packet with the

duplicate Timestamp and Identity is transmitted to a CP, it

can be regarded as a bogus request and dropped. In addition,

Signature is generated using USK to verify the authenticity of

the user further. The modified structure of Interest packet is

illustrated in Fig. 3.

D. Procedure of PPP

The procedure of PPP scheme includes the following steps:

Initialization. The CP generates the polynomial of k-degree

and obtains the shares.

Registration. To obtain access right, a user must

firstly send an Interest packet for registration. The

UID’s hash value is added to the request name,

which protects the users’ privacy and differentiates

different users’ requests. The user gets Identity =
IBE.encrypt(UID,PID), where IBE.encrypt(·) is

the encrypting algorithm of IBE scheme, then has

Signature = IBS.sign((Name, T imestamp), USK),
where IBS.sign(·) is the signing algorithm of IBS scheme.

The Identity, T imestamp and Signature are to be

transmitted together with Interest packet.

Distribution of US. After receiving the request, the

CP verifies the validity of the request by Identity
and T imestamp in the Interest packet. The CP

firstly uses its own PSK to decrypt the Identity, and

obtains UID = IBE.decrypt(Identity, PSK), where

IBE.decrypt(·) represents the decrypting algorithm of IBE

scheme. To determine if the request is bogus and eliminate

the asynchronism between the clocks of CP and user, the CP

must maintain a collection of timestamps for the same user

in a certain period of time T . Once a duplicate T imestamp
for the same user is accepted within T , the CP will drop the

packet. Then in order to verify the authenticity of the user

further by checking the Signature, the CP obtains Result =
IBS.verify((Name, T imestamp), Signature, UID),
where IBS.verify(·) represents the verifying algorithm of

IBS scheme. Only if Result is TRUE, the CP will generate

USi for the user, then use UID to encrypt USi, and obtain

US
′
i = IBE.encrypt(UID,USi). The Data packet containing

US
′
i will be returned to the user. When receiving the Data

packet, the user obtains USi = IBE.decrypt(US
′
i , USK).

Fig. 4. The generation of DK

DK generation and Content encryption. The method

H(S1, S2) generating DK is similar to the Merkle Hash Tree

(MHT) algorithm [16], as shown in Fig. 4. Firstly, the CP

generates S1 and random S2, then obtains DK by H(S1, S2).
DK may be the top hash value or only portions of the top

hash value. Finally, the CP performs the symmetric encryption

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

using DK and distributes the ciphered message. Hash functions

mainly used to generate DK make all operations lightweight.

Content decryption. To access one content object, the

authorized user firstly initiates an Interet packet requesting

the responding CS, and calculates S1, then extracts S2 and

calculates DK by H(S1, S2). Finally, the user retrieves the

original message by performing the symmetric decryption.

User revocation and addition. The addition and revocation

of access privileges in PPP scheme will not affect other

legitimate users. When revoking a user ux, the CP only

calculates CSi, (i = 1, 2, ···,m, i �= x). If the user ux requests

CSx, the CP will return a prompt message without CSx.

In addition, when adding a new user, the CP will generate

new (u, q(u)) which must be not reused for other users, then

calculate US and ω(u) for it.

IV. SECURITY ANALYSIS

In this section, we verify the security of the PPP scheme.

Due to the SSS adopted here, we firstly analyze the collusion

resistance. Each legitimate user only possesses one incomplete

and specified share called US here, and does not hold the point

(u, q(u)), so US must be combined with the corresponding

CS to recover S1, and the polynomial degree is no longer

associated with the number of users, which can make the

collusion of n+1 users very hard.

Then we analyze the use of one-way hash functions which

are very effective to generate key for each chunk. There are

mainly two common methods attacking the hash funcitons.

One is exhaustive method, it is easily implemented only when

the password is simple. However, the method is difficult to

work in the complicated situation, especially for the input

with the variable length. S is the input in the one-way hash

functions, the length of S is L, the number of different

characters may appear in S is N , and the time required to

crack the hash value each time is T0. So the total time to crack

is T = T0×NL . With the increments of N and L, the attacker

needs more time to crack, so it is hard to obtain the original

value by using the ordinary exhaustive method. Another is to

find collision. When the collision happens, the hash values of

different strings are same. But there is no effective way to

find collision for SHA1, for example, the length of hash value

for SHA1 is 160 bit, so there are 2160 results, which reveals

that collision probability is quite low. In order to improve the

security further, PPP scheme adopts the MHT algorithm with

multiple hash functions. If S1 is complex enough, the attacker

cannot crack it by using the above methods. Even though

S1 is simple, the attacker cannot obtain the result within a

reasonable time.

V. PERFORMANCE EVALUATION

In order to demonstrate the feasibility of the proposed

scheme for NDN environment, we evaluate its efficiency,

including the running time of generating shares and calcu-

lating S1, computation cost and system resource consumption

when encrypting and decrypting chunks at CP and at users

respectively in the testbed based on NFD [17]. All simulation

experiments are performed on the Ubuntu 16.04 with 2 GB

RAM and a 4-core CPU. All the programs are written in the

C++ language using the GNU Multiple Precision Arithmetic

(GMP) [18] library and Number Theory Library (NTL) [19]

for cryptographic operations.

A. Efficiency of SSS

� �� ��� ��� ��� ��� ��� ��� ��� ���

�

��

���

���

���

��
��
�

����������	
��
��	�

	����

	����

	����

	����

	����

(a) Generation time of users and
complementary shares

�� �� �� �� ��

�

�

�

�

	

��

��

��

��

�	

��

��
��
�

��������	��
��
��

����

��
�

(b) Generation time of CS

�� ��� ��� ��� ��� ��� ��� ���

�

�

�

�

�

��
��
�
�

����������	
��
��	�

	���

		���

(c) S1 calculation time on the user

Fig. 5. The computation cost of SSS

We implement the improved SSS, and measure the compu-

tation cost of generating the shares at the CP and recovering S1

at the user. Note that k ranges from 50 to 400 in increments

of 50, and m ranges from 1K to 5K in increments of 1K,

where K stands for thousand. The results are averaged over

100 experiments run.

Fig. 5(a) shows the time consumed by the CP to generate

a polynomial, users’ and complementary shares. The running

time is dependent on the value of k and m. As the numbers

of k and m increase, the required time increase. Due to the

computation of CS and US, the procedure consumes more

time, but it can be performed offline by the CP. Additionally,

the scalability and collusion issues have been solved in the

improved SSS. Therefore, to reduce the computation cost at

the CP, we can choose a moderate-sized k. Note that Fig. 5(a)

displays the overall running time of Algorithm 1, however, the

CP only calculates CS based ω(u) for a content data when

there are no new users to be added. Fig. 5(b) shows the time

taken to generate CS that noly performs the step in Line 5

of Algorithm 1. Compared with IBE, the improved SSS that

generates and assigns CS to the corresponding user without

IBE encryption will take less time on the CP. Fig. 5(c) presents

a comparative analysis of the S1 calculation time in SSS and

IBE on the user. Due to the pre-computation of the Lagrangian

coefficients, the CP does not transmit the actual point (u, q(u))
but US and CS, resulting in reduced computation time at the

user. Compared with IBE, the PPP using SSS to distribute the

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

S1 for different contents will realize a more efficient access

control scheme on users’ level.

B. Efficiency of Encryption/Decryption

In our experiments, Advanced Encryption Standard (AES)

is chosen to encrypt data objects, and Secure Hash Algorithm

1 (SHA1) is chosen as the one-way hash function which

calculates the DK here. Besides, we choose 128 bits as key

size.

1 2 3 4 5 6 7 8

data size\KB

0.02

0.04

0.06

0.08

0.1

0.12

t\m
s

Encryption with AES
Encryption with PPP

(a) Encryption with AES and PPP

1 2 3 4 5 6 7 8

data size\KB

0.02

0.04

0.06

0.08

0.1

0.12

t\m
s

Decryption with AES
Decryption with PPP

(b) Decryption with AES and PPP

Fig. 6. Speed of Encryption/Decryption with AES and PPP

First of all, eight text files treated as Data packets with

different sizes ranging from 1KB to 8KB in increments of

1KB, are encrypted and decrypted using AES encryption

algorithm with and without SHA-1. The AES without SHA-

1 and with SHA-1 represents the traditional encryption-based

access control mechanism and our PPP scheme respectively.

As shown in Fig. 6, it is not surprising to see that the PPP

scheme introduces a litte more overhead on encryption and

decryption steps.

C. System Overhead

Fig. 7. Topology

TABLE I
THE KEYS OF PARTIAL DATA PACKETS

The chunk
name(S2) S1 DK

/content
/text/001

a735146778e7
1b17e8f25580
6cf83223511b
b2756cf842ef
f6cb9b8a39f8

7098

565789b7cf23d60
67b1efc4835d668d

/content
/text/002

aa2fc79ee835577
43281bf25ca75a9f7

/content
/text/003

3c8a2fd4e112843
073e01ff481d47de6

Next, we compare the impact on the system usages, in-

cluding the memory consumption and CPU usage, on the

CP and user. We implement the PPP scheme based on NFD.

For simplicity, the topology is a simple line with three nodes

shown in Fig. 7 where the user A and user B represent the

authorized and unauthorized users respectively. The users send

an Interest packet per second, and the CP sends the text files

with the size of 2K bytes as the protected Data packets. Note

that the names of Data packets are chosen as S2 here, since the

chunks’ names are different without increasing the additional

message and communication cost.

� �� ��� ��� ��� ��� ���

�

�

�

�

�

��

��

��

��

�
�
�
�
��
��
	

�
��
�
�

��������

�	
��
��
������
�����
������

�	
��
��
���������

�	
��
��
������			

�����
��
������
�����
������

�����
��
���������

�����
��
������			

(a) Memory usage

� �� ��� ��� ��� ��� ���

���

���

���

���

��	

���

���

���

���

��	

���

�
�
�
��
�
�
�
	

�

�

��������

�	
��
��
������
�����
������

�	
��
��
���������

�	
��
��
������			

�����
��
������
�����
������

�����
��
���������

�����
��
������			

(b) CPU usage

Fig. 8. The comparison of memory and CPU usage

The experimental results show that only the user A can

decrypt the text segments while the user B cannot read the text

segments easily in the PPP scheme even though it can fetch

these text chunks from the intermediate NDN routers. The

keys of partial text chunks are displayed in Table I. In Table

I, S1 and DK are printed out and displayed in hexadecimal

format. Fig. 8 shows that the memory and CPU usage on the

CP and user in our scheme nearly remain the same for the

scenarios with or without encryption-based access control. In

other words, the PPP scheme using one-way hash functions

does not incur significant memory and CPU overhead on both

the CP and the user.

VI. CONCLUSION

In this paper, we propose a PPP scheme which ensures that

each protected Data packet will obtain higher security. The

data objects are encrypted using different symmetric keys, and

the fixed part of the keys is distributed to authorized users by

IBC and SSS, which ensures that only authorized users can

obtain the keys of content data using one-way hash functions

and provides more efficient access control. Our experimental

results have demonstrated the performance of the proposed

solution, which reduces computation cost on users’ level and

takes less time to distribute each content object’s key on the

CP, and introduces the acceptable overheads of the content

encryption and decryption process.

ACKNOWLEDGMENT

The work was jointly supported by the Chongqing Munici-

pal project under GRANT cstc2015jcyjBX0009 and CSTCK-

JCXLJRC20.

REFERENCES

[1] C. V. networking Index, “Forecast and methodology, 2016-2021, white
paper,” San Jose, CA, USA, 2016.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

[2] S. Wang, J. Bi, J. Wu, Z. Li, W. Zhang, and X. Yang, “Could
in-network caching benefit information-centric networking?” in Asian
Internet Engineering Conference, 2011, pp. 112–115.

[3] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy,
and access control in information-centric networking: A survey,” IEEE
Communications Surveys and Tutorials, vol. PP, no. 99, pp. 1–1, 2016.

[4] X. Zhang, K. Chang, H. Xiong, Y. Wen, G. Shi, and G. Wang, “Towards
name-based trust and security for content-centric network,” in IEEE
International Conference on Network Protocols, 2011, pp. 1–6.

[5] S. Misra, R. Tourani, and N. E. Majd, “Secure content delivery in
information-centric networks: design, implementation, and analyses,”
in ACM SIGCOMM Workshop on Information-Centric NETWORKING,
2013, pp. 73–78.

[6] S. Misra, R. Tourani, F. Natividad, T. Mick, N. E. Majd, and H. Hong,
“Accconf: An access control framework for leveraging in-network
cached data in the icn-enabled wireless edge,” IEEE Transactions on
Dependable & Secure Computing, vol. PP, no. 99, pp. 1–1, 2016.

[7] T. Chen, K. Lei, and K. Xu, “An encryption and probability based
access control model for named data networking,” in PERFORMANCE
Computing and Communications Conference, 2014, pp. 1–8.

[8] A. Shamir, How to share a secret. ACM, 1979.
[9] M. Naor and M. Yung, “Universal one-way hash functions and their

cryptographic applications,” 1989, pp. 33–43.
[10] Q. Li, X. Zhang, Q. Zheng, and R. Sandhu, “Live: Lightweight integrity

verification and content access control for named data networking,”
Information Forensics and Security IEEE Transactions on, vol. 10, no. 2,
pp. 308–320, 2015.

[11] D. Saxena, V. Raychoudhury, N. Suri, C. Becker, and J. Cao, “Named
data networking: A survey,” Computer Science Review, vol. 19, pp. 15–
55, 2016.

[12] D. A. Quadling, Lagrange’s Interpolation Formula. John Wiley &
Sons, Inc., 2006.

[13] B. Dan and M. Franklin, “Identity-based encryption from the weil
pairing,” Siam Journal on Computing, vol. 32, no. 3, pp. 213–229, 2001.

[14] E. Kiltz, G. Neven, and M. Joye, “Identity-based signatures,” Cryptology
& Information Security, 2008.

[15] Y. Imine, A. Lounis, A. Bouabdallah, Y. Imine, A. Lounis, A. Bouab-
dallah, Y. Imine, A. Lounis, and A. Bouabdallah, “Abr: A new efficient
attribute based revocation on access control system,” in International
Wireless Communications and Mobile Computing Conference, 2017, pp.
735–740.

[16] G. Becker, “Merkle signature schemes, merkle trees and their cryptanal-
ysis,” 2013.

[17] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu,
W. Shang, Y. Huang, J. P. Abraham, S. DiBenedetto et al., “Nfd
developers guide,” Dept. Comput. Sci., Univ. California, Los Angeles,
Los Angeles, CA, USA, Tech. Rep. NDN-0021, 2014.

[18] “The gmp library,” https://gmplib.org/.
[19] “Ntl: A library for doing number theory,” http://www.shoup.net/ntl/.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

